
A Model-based Trust Region Method for
Stochastic Derivative-free Optimization

Jeffrey Larson Stephen Billups

Argonne National Laboratory

July 26, 2015

The Problem

We want to solve:
minimize

x∈Rn
f (x)

when ∇f (x) is unavailable and we only have access to noise-corrupted
function evaluations f̄ (x).

Such noise may be deterministic (e.g., from iterative methods) or
stochastic (e.g., from a Monte-Carlo process).

Model-based methods are one of the most popular methods when ∇f is
unavailable, and the only recourse when noise is deterministic.

n is small, f is likely nonconvex.

2 of 31.

The Problem

We want to solve:
minimize

x∈Rn
f (x)

when ∇f (x) is unavailable and we only have access to noise-corrupted
function evaluations f̄ (x).

Such noise may be deterministic (e.g., from iterative methods) or
stochastic (e.g., from a Monte-Carlo process).

Model-based methods are one of the most popular methods when ∇f is
unavailable, and the only recourse when noise is deterministic.

n is small, f is likely nonconvex.

2 of 31.

The Problem

We want to solve:
minimize

x∈Rn
f (x)

when ∇f (x) is unavailable and we only have access to noise-corrupted
function evaluations f̄ (x).

Such noise may be deterministic (e.g., from iterative methods) or
stochastic (e.g., from a Monte-Carlo process).

Model-based methods are one of the most popular methods when ∇f is
unavailable, and the only recourse when noise is deterministic.

n is small, f is likely nonconvex.

2 of 31.

The Problem

We want to solve:
minimize

x∈Rn
f (x)

when ∇f (x) is unavailable and we only have access to noise-corrupted
function evaluations f̄ (x).

Such noise may be deterministic (e.g., from iterative methods) or
stochastic (e.g., from a Monte-Carlo process).

Model-based methods are one of the most popular methods when ∇f is
unavailable, and the only recourse when noise is deterministic.

n is small, f is likely nonconvex.

2 of 31.

The Problem

We analyze the convergence of our method in the stochastic case:

f̄ (x) = f (x) + ε,

where ε is identically distributed with mean 0 and variance σ2 <∞.

This is equivalent to solving:

minimize
x

E
[
f̄ (x)

]
.

3 of 31.

The Problem

We analyze the convergence of our method in the stochastic case:

f̄ (x) = f (x) + ε,

where ε is identically distributed with mean 0 and variance σ2 <∞.

This is equivalent to solving:

minimize
x

E
[
f̄ (x)

]
.

3 of 31.

Prototype

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

4 of 31.

Prototype

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

4 of 31.

Prototype

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

4 of 31.

Prototype

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

4 of 31.

Prototype

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

4 of 31.

Prototype

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

4 of 31.

Prototype

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

4 of 31.

Prototype

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

4 of 31.

Prototype

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

4 of 31.

Prototype

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

4 of 31.

Prototype

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

4 of 31.

Prototype

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

4 of 31.

Prototype

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

4 of 31.

Prototype

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

4 of 31.

Prototype

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

4 of 31.

Strongly Λ-poised Sets

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

5 of 31.

Stochastic Approximation

Iterates usually have the form:

xk+1 = xk + akG (xk),

where

I G (xk) is a cheap, unbiased estimate for ∇f (xk)

I ak is a sequence of step sizes (specified by the user) satisfying:
∞∑

k=1

ak =∞ lim
k→∞

ak = 0

Algorithm performance depends significantly on sequence ak .

6 of 31.

Stochastic Approximation

Iterates usually have the form:

xk+1 = xk + akG (xk),

where

I G (xk) is a cheap, unbiased estimate for ∇f (xk)

I For Kiefer-Wolfowitz,

Gi(x
k) =

f̄ (xk + ckei)− f̄ (xk − ckei)

2ck

where ei is the ith column of In.

I ak is a sequence of step sizes (specified by the user) satisfying:
∞∑

k=1

ak =∞ lim
k→∞

ak = 0

Algorithm performance depends significantly on sequence ak .

6 of 31.

Stochastic Approximation

Iterates usually have the form:

xk+1 = xk + akG (xk),

where

I G (xk) is a cheap, unbiased estimate for ∇f (xk)

I For Spall’s SPSA,

Gi(x
k) =

f̄ (xk + ckδ
k)− f̄ (xk − ckδ

k)

2ckδki

where δk ∈ Rn is a random perturbation vector

I ak is a sequence of step sizes (specified by the user) satisfying:
∞∑

k=1

ak =∞ lim
k→∞

ak = 0

Algorithm performance depends significantly on sequence ak .

6 of 31.

Stochastic Approximation

Iterates usually have the form:

xk+1 = xk + akG (xk),

where

I G (xk) is a cheap, unbiased estimate for ∇f (xk)

I ak is a sequence of step sizes

(specified by the user) satisfying:
∞∑

k=1

ak =∞ lim
k→∞

ak = 0

Algorithm performance depends significantly on sequence ak .

6 of 31.

Stochastic Approximation

Iterates usually have the form:

xk+1 = xk + akG (xk),

where

I G (xk) is a cheap, unbiased estimate for ∇f (xk)

I ak is a sequence of step sizes (specified by the user) satisfying:
∞∑

k=1

ak =∞ lim
k→∞

ak = 0

Algorithm performance depends significantly on sequence ak .

6 of 31.

Stochastic Approximation

Iterates usually have the form:

xk+1 = xk + akG (xk),

where

I G (xk) is a cheap, unbiased estimate for ∇f (xk)

I ak is a sequence of step sizes (specified by the user) satisfying:
∞∑

k=1

ak =∞ lim
k→∞

ak = 0

Algorithm performance depends significantly on sequence ak .

6 of 31.

Response Surface Methodology
I Build models using a fixed pattern of points, (e.g., cubic, spherical,

or orthogonal designs).

I Finding the design that constructs response surfaces approximating
the function (without few function evaluations) can be difficult for
problems where the user has no prior expertise.

7 of 31.

Modifications to Existing Methods

Take a favorite method and repeatedly evaluate the function at points
of interest.
I Stochastic approximation modified by Dupuis, Simha (1991)
I Response surface methods modified by Chang et al. (2012)
I UOBYQA modified by Deng, Ferris (2006)
I Nelder-Mead modified by Tomick et al. (1995)
I DIRECT modified by Deng, Ferris (2007)

There are two downsides to such an approach:

1. Repeated sampling provides information about the noise ε, not f .

2. If the noise is deterministic, no information is gained.

8 of 31.

Modifications to Existing Methods

Take a favorite method and repeatedly evaluate the function at points
of interest.
I Stochastic approximation modified by Dupuis, Simha (1991)
I Response surface methods modified by Chang et al. (2012)
I UOBYQA modified by Deng, Ferris (2006)
I Nelder-Mead modified by Tomick et al. (1995)
I DIRECT modified by Deng, Ferris (2007)

There are two downsides to such an approach:

1. Repeated sampling provides information about the noise ε, not f .

2. If the noise is deterministic, no information is gained.

8 of 31.

Overview

We therefore desire a method that

1. Adjusts the step size as it progresses

2. Does not use a fixed design of points

3. Does not repeatedly sample points

We’d like the class of possible models to be general.

9 of 31.

Overview

We therefore desire a method that

1. Adjusts the step size as it progresses

2. Does not use a fixed design of points

3. Does not repeatedly sample points

We’d like the class of possible models to be general.

9 of 31.

κ-fully Linear model

Definition
If f ∈ LC and ∃ a vector κ = (κef , κeg) of positive constants such that
I the error between the gradient of the model and the gradient of

the function satisfies

‖∇f (y)−∇m(y)‖ ≤ κeg∆ ∀y ∈ B(x ; ∆),

I the error between the model and the function satisfies

|f (y)−m(y)| ≤ κef ∆2 ∀y ∈ B(x ; ∆),

we say the model is κ-fully linear on B(x ; ∆).

10 of 31.

α-probabilistically κ-fully Linear model

Definition
Let κ = (κef , κeg) be a given vector of constants, and let α ∈ (0, 1).
Let B ⊂ Rn be given. A random model mk generated at the kth
iteration of an algorithm is α-probabilistically κ-fully linear on B if

P
(
mk is a κ-fully linear model of f on B

∣∣Fk−1
)
≥ α,

where Fk−1 denotes the realizations of all the random events for the
first k − 1 iterations.

11 of 31.

Regression Models can be α-probabilistically κ-fully
Linear

Theorem
For a given x ∈ Rn, ∆ > 0, α ∈ (0, 1),
I Y ⊂ B(x ; ∆) is strongly Λ-poised,
I The noise present in f̄ is i.i.d. with mean 0, variance σ2 <∞,
I |Y | ≥ C/∆4,

Then there exist constants κ = (κef , κeg) (independent of ∆ and Y)
such that the linear model m regressing Y is α-probabilistically κ-fully
linear on B(x ; ∆).

12 of 31.

Measuring Progress

In traditional trust region methods, if xk + sk is the minimizer of mk ,
the success of moving from xk to xk + sk is measured by

ρk =
f (xk)− f (xk + sk)

mk(xk)−mk(xk + sk)

In the stochastic case, a similar calculation is not obvious.

13 of 31.

Measuring Progress

In traditional trust region methods, if xk + sk is the minimizer of mk ,
the success of moving from xk to xk + sk is measured by

ρk =
f (xk)− f (xk + sk)

mk(xk)−mk(xk + sk)

In the stochastic case, a similar calculation is not obvious.

ρk =
f̄ (xk)− f̄ (xk + sk)

mk(xk)−mk(xk + sk)

13 of 31.

Measuring Progress

In traditional trust region methods, if xk + sk is the minimizer of mk ,
the success of moving from xk to xk + sk is measured by

ρk =
f (xk)− f (xk + sk)

mk(xk)−mk(xk + sk)

In the stochastic case, a similar calculation is not obvious.

ρk =
mk(xk)−mk(xk + sk)

mk(xk)−mk(xk + sk)

13 of 31.

Measuring Progress

In traditional trust region methods, if xk + sk is the minimizer of mk ,
the success of moving from xk to xk + sk is measured by

ρk =
f (xk)− f (xk + sk)

mk(xk)−mk(xk + sk)

In the stochastic case, a similar calculation is not obvious.

ρk =
mk(xk)− m̂k(xk + sk)

mk(xk)−mk(xk + sk)

13 of 31.

Measuring Progress

In traditional trust region methods, if xk + sk is the minimizer of mk ,
the success of moving from xk to xk + sk is measured by

ρk =
f (xk)− f (xk + sk)

mk(xk)−mk(xk + sk)

In the stochastic case, a similar calculation is not obvious.

ρk =
F 0

k − F s
k

mk(xk)−mk(xk + sk)

13 of 31.

One Last Part
For our analysis, we need estimates of f (xk) and f (xk + sk) that are
slightly different than those provided by the model functions.

Let F 0
k and F s

k denote the sequence of estimates of f (xk) and
f (xk + sk).

We need to be able to construct estimates satisfying

P
[∣∣F 0

k − f (xk)
∣∣ > εmin

{
∆k ,∆

2
k

} ∣∣Fk−1
]
< θ

and P
[∣∣F s

k − f (xk + sk)
∣∣ > εmin

{
∆k ,∆

2
k

} ∣∣∣Fk−1

]
< θ,

for any ε > 0 and θ > 0.

14 of 31.

Algorithm 1: A trust region algorithm to minimize a stochastic function

Set k = 0;
Start
Build a α-probabilistically κ-fully linear model mk on B(xk ; ∆k);
Compute sk = arg min

s:‖xk−s‖≤∆k

mk(s);

if mk(sk)−mk(xk + sk) ≥ β∆k then

Calculate ρk =
F 0

k − F s
k

mk(xk)−mk(xk + sk)
;

if ρk ≥ η then
Calculate xk+1 = xk + sk ; ∆k+1 = γinc∆k ;

else
xk+1 = xk ; ∆k+1 = γdec∆k ;

end
else

xk+1 = xk ; ∆k+1 = γdec∆k ;
end
k = k + 1 and go to Start;

Convergence

Under what assumptions will our algorithm converge almost surely to a
first-order stationary point?

I Assumptions on f

I Assumptions on ε

I Assumptions on algorithmic constants

16 of 31.

Convergence

Assumption

On some set Ω ⊆ Rn containing all iterates visited by the algorithm,
I ∇f is Lipschitz continuous with constant Lg

I f has bounded level sets

Assumption

The additive noise ε observed when computing f̄ is independent and
identically distributed with mean zero and bounded variance σ2.

17 of 31.

Convergence

Assumption

The constants α ∈ (0, 1), γdec ∈ (0, 1), and γinc > 1 satisfy

α ≥ max

1
2
, 1−

γinc−1
γinc

4
[
γinc−1
2γinc

+ 1−γdec
γdec

]
 ,

where
I α is the lower bound on the probability of having a κ-fully linear

model,
I γdec ∈ (0, 1) is the factor by which we decrease the trust region

radius,
I γinc > 1 is the factor by which the trust radius is increased.

If γinc = 2 and γdec = 0.5 =⇒ α ≥ 0.9.
If γinc = 2 and γdec = 0.9 =⇒ α ≥ 0.65.

18 of 31.

Convergence

Assumption

The constants α ∈ (0, 1), γdec ∈ (0, 1), and γinc > 1 satisfy

α ≥ max

1
2
, 1−

γinc−1
γinc

4
[
γinc−1
2γinc

+ 1−γdec
γdec

]
 ,

where
I α is the lower bound on the probability of having a κ-fully linear

model,
I γdec ∈ (0, 1) is the factor by which we decrease the trust region

radius,
I γinc > 1 is the factor by which the trust radius is increased.

If γinc = 2 and γdec = 0.5 =⇒ α ≥ 0.9.
If γinc = 2 and γdec = 0.9 =⇒ α ≥ 0.65.

18 of 31.

Proof Outline

Theorem
If the above assumptions are satisfied, our algorithm converges almost
surely to a first-order stationary point of f .

I Show the sequence of trust region radii ∆k → 0 almost surely.

I Show if ∆k ever falls below some constant multiple of the model
gradient, ∆k+1 > ∆k with high probability.

I Lastly, show that, the sequence of ratios

{ψk} =

{∥∥∇f (xk)
∥∥

∆k

}

satisfies E [ψk+1|Fk] ≤ ψk when ψk ≥ L. This allows us to prove∥∥∇f (xk)
∥∥→ 0 in probability.

19 of 31.

Proof Outline

Theorem
If the above assumptions are satisfied, our algorithm converges almost
surely to a first-order stationary point of f .

I Show the sequence of trust region radii ∆k → 0 almost surely.
I Show if ∆k ever falls below some constant multiple of the model

gradient, ∆k+1 > ∆k with high probability.

I Lastly, show that, the sequence of ratios

{ψk} =

{∥∥∇f (xk)
∥∥

∆k

}

satisfies E [ψk+1|Fk] ≤ ψk when ψk ≥ L. This allows us to prove∥∥∇f (xk)
∥∥→ 0 in probability.

19 of 31.

Proof Outline

Theorem
If the above assumptions are satisfied, our algorithm converges almost
surely to a first-order stationary point of f .

I Show the sequence of trust region radii ∆k → 0 almost surely.
I Show if ∆k ever falls below some constant multiple of the model

gradient, ∆k+1 > ∆k with high probability.
I Lastly, show that, the sequence of ratios

{ψk} =

{∥∥∇f (xk)
∥∥

∆k

}

satisfies E [ψk+1|Fk] ≤ ψk when ψk ≥ L. This allows us to prove∥∥∇f (xk)
∥∥→ 0 in probability.

19 of 31.

Algorithm 1: A trust region algorithm to minimize a stochastic function

Set k = 0;
Start
Build a α-probabilistically κ-fully linear model mk on B(xk ; ∆k);
Compute sk = arg min

s:‖xk−s‖≤∆k

mk(s);

if mk(sk)−mk(xk + sk) ≥ β∆k then

Calculate ρk =
F 0

k − F s
k

mk(xk)−mk(xk + sk)
;

if ρk ≥ η then
Calculate xk+1 = xk + sk ; ∆k+1 = γinc∆k ;

else
xk+1 = xk ; ∆k+1 = γdec∆k ;

end
else

xk+1 = xk ; ∆k+1 = γdec∆k ;
end
k = k + 1 and go to Start;

Prototype
I mk is a linear regression model on a sample set of (n + 1)Ck

sample points, where Ck is defined by

Ck =

⌈
k

1000

⌉ max
{

n + 1,
⌊

1
∆4

k

⌋}
n + 1

.

The sample set consists of Ck randomly rotated copies of the set

{xk , xk + ∆ke1, . . . , xk + ∆ken}

21 of 31.

Prototype
I mk is a linear regression model on a sample set of (n + 1)Ck

sample points, where Ck is defined by

Ck =

⌈
k

1000

⌉ max
{

n + 1,
⌊

1
∆4

k

⌋}
n + 1

.

The sample set consists of Ck randomly rotated copies of the set

{xk , xk + ∆ke1, . . . , xk + ∆ken}

I F 0
k = m0

k(xk), where m0
k is a linear regression model using Ck randomly

rotated copies of the set

{xk , xk + 0.5∆ke1, . . . , xk + 0.5∆ken}

21 of 31.

Prototype
I mk is a linear regression model on a sample set of (n + 1)Ck

sample points, where Ck is defined by

Ck =

⌈
k

1000

⌉ max
{

n + 1,
⌊

1
∆4

k

⌋}
n + 1

.

The sample set consists of Ck randomly rotated copies of the set

{xk , xk + ∆ke1, . . . , xk + ∆ken}

I F s
k = ms

k(xk), where ms
k is a linear regression model using Ck randomly

rotated copies of the set

{xk + sk , xk + sk + 0.5∆ke1, . . . , xk + sk + 0.5∆ken}

21 of 31.

Problem Set
53 problems of the form:

f (x) =

m∑
i=1

[(1 + σ)Fi (x)]2 ,

where σ ∼ U[−0.1, 0.1].

If S is the set of solvers to be compared on a suite of problems P, let
tp,s be the number of iterates required for solver s ∈ S on a problem
p ∈ P to find a function value satisfying:

f (x)− fL ≤ τ
(
f (x0)− fL

)
,

where fL is the best function value achieved by any s ∈ S .

22 of 31.

Problem Set
53 problems of the form:

f (x) =

m∑
i=1

[(1 + σ)Fi (x)]2 ,

where σ ∼ U[−0.1, 0.1].

If S is the set of solvers to be compared on a suite of problems P, let
tp,s be the number of iterates required for solver s ∈ S on a problem
p ∈ P to find a function value satisfying:

f (x)− fL ≤ τ
(
f (x0)− fL

)
,

where fL is the best function value achieved by any s ∈ S .

22 of 31.

Problem Set
Comments

I We are using the true function value f , not the observed f̄ .
I Since the noise is stochastic, each solver is run 10 times per

problem.

If S is the set of solvers to be compared on a suite of problems P, let
tp,s be the number of iterates required for solver s ∈ S on a problem
p ∈ P to find a function value satisfying:

f (x)− fL ≤ τ
(
f (x0)− fL

)
,

where fL is the best function value achieved by any s ∈ S .

22 of 31.

Performance Profile

Then the performance profile of a solver s ∈ S is the following fraction:

ρs(φ) =
1
|P|

∣∣∣∣{p ∈ P :
tp,s

min {tp,s : s ∈ S} ≤ φ
}∣∣∣∣

I ρs(1): Fraction of P method s solves first.
I limφ→∞ ρs(φ): Fraction of P method s eventually solves.
I ρs(φ): Fraction of P method s solves in under φ times the

evaluations required for the best method.

23 of 31.

Performance Profile

Then the performance profile of a solver s ∈ S is the following fraction:

ρs(φ) =
1
|P|

∣∣∣∣{p ∈ P :
tp,s

min {tp,s : s ∈ S} ≤ φ
}∣∣∣∣

I ρs(1): Fraction of P method s solves first.
I limφ→∞ ρs(φ): Fraction of P method s eventually solves.
I ρs(φ): Fraction of P method s solves in under φ times the

evaluations required for the best method.

23 of 31.

Performance Profile

We compare our prototype against Spall’s versions of Kiefer-Wolfowitz
and SPSA with step sizes as recommended in Sections 6.6 and 7.5.2 of
Spall (2003)

ak =
1

(k + 1 + A)0.602 ck =
1

(k + 1)0.101

where A is one tenth of the total budget of function evaluations.

24 of 31.

Performance Profile

� KW◦ SPSA
△ Prototype

ρ
s
(φ
)

φ

τ = 10−1

10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ρs(1):

Fraction s solves
first

limφ→∞ ρs(φ):

Fraction s solves

ρs(φ):

Fraction s solves in
under φ times the
evaluations required
for the best
method.

25 of 31.

Performance Profile

� KW◦ SPSA
△ Prototype

ρ
s
(φ
)

φ

τ = 10−2

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ρs(1):

Fraction s solves
first

limφ→∞ ρs(φ):

Fraction s solves

ρs(φ):

Fraction s solves in
under φ times the
evaluations required
for the best
method.

25 of 31.

Performance Profile

� KW◦ SPSA
△ Prototype

ρ
s
(φ
)

φ

τ = 10−3

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ρs(1):

Fraction s solves
first

limφ→∞ ρs(φ):

Fraction s solves

ρs(φ):

Fraction s solves in
under φ times the
evaluations required
for the best
method.

25 of 31.

Another Problem Set
53 problems of the form:

f (x) = σp +

m∑
i=1

[Fi (x)]2 ,

where σp ∼ N
(
0, (0.1∆p)2

)
and ∆p =

∑
i

Fi (x0)−
∑

i

Fi (x∗).

26 of 31.

Performance Profile

� KW◦ SPSA
△ Prototype

ρ
s
(φ
)

φ

τ = 10−1

5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ρs(1):

Fraction s solves
first

limφ→∞ ρs(φ):

Fraction s solves

ρs(φ):

Fraction s solves in
under φ times the
evaluations required
for the best
method.

27 of 31.

Performance Profile

� KW◦ SPSA
△ Prototype

ρ
s
(φ
)

φ

τ = 10−2

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ρs(1):

Fraction s solves
first

limφ→∞ ρs(φ):

Fraction s solves

ρs(φ):

Fraction s solves in
under φ times the
evaluations required
for the best
method.

27 of 31.

Further Information and Current Work
Preprint on Optimization Online

“Stochastic Derivative-free Optimization using a Trust Region
Framework”

I Generalizing results to ensure a practical algorithm converges.
I For example, not requiring α-probabilistically κ-fully linear models

every iteration.

I Smartly constructing α-probabilistically κ-fully linear models.

28 of 31.

Further Information and Current Work
Preprint on Optimization Online

“Stochastic Derivative-free Optimization using a Trust Region
Framework”

I Generalizing results to ensure a practical algorithm converges.
I For example, not requiring α-probabilistically κ-fully linear models

every iteration.

I Smartly constructing α-probabilistically κ-fully linear models.

28 of 31.

Further Information and Current Work
Preprint on Optimization Online

“Stochastic Derivative-free Optimization using a Trust Region
Framework”

I Generalizing results to ensure a practical algorithm converges.
I For example, not requiring α-probabilistically κ-fully linear models

every iteration.

I Smartly constructing α-probabilistically κ-fully linear models.

28 of 31.

	Stochastic Derivative-free Optimization
	Common Approaches
	Our Method
	Outline of Convergence Proof
	Numerical Results

